You can help the Ordinal Markup Wiki by polishing Singularity.
The Singularity () is a post-Collapse feature unlocked with a Booster Upgrade requiring 1e11 Boosters (~447,214 Factor Boosts) and 33 Challenge Completions (requires Challenge 8 x12 and the rest of the Challenges to be done).
You can spend Dark Manifolds, Manifolds and ℵω to upgrade the Singularity, respectively. Each upgrade raises the Factor Boost requirement for Factor Boosts 25 or higher, but allows you to essentially gain a multiplier to Factor Boost gain. This will also allow you to gain more Incrementy per second, helping with grinding for Manifolds for upgrading the Singularity. The cost multipliers for each of the 3 sources are x5, +1 and x100, respectively. The rest of the Costs of the 3 sources are listed in the table below. However, spending Dark Manifolds or Manifolds does not affect their requirement. Every time you upgrade the Singularity, you gain an additive 2x multiplier to Factor Boost gain for each Factor Boost you attain, being the Formula x, where represents your current Singularity level. You can also downgrade the Singularity by 1 level to get back 1 Manifold, to allow you to perform the first few Factor Boosts in Cardinal grinds quicker.
At level 20 Singularity, you unlock Singularity Functions.
Resource | Base Cost | Cost Growth | Optimized Amount of Upgrades for Level 20 Singularity | Maximum bought |
---|---|---|---|---|
Dark Manifolds | 1.000e6 | *5 (*4 if you have SFU23) | 7 | 502 |
Manifolds | 1 | +1 | 10 | 398 (before Incrementyverse)
Infinity (Incrementyverse) |
ℵω | 1.000e20 | *100 (*30 if you have SFU21) | 2 | 195 |
Notes:
- Once Singularity Functions are unlocked, there are two specific functions that lower the costs of purchasing Singularity levels with Dark Manifolds and ℵω.
- SFU21 reduces the cost scaling for ℵω Singularity costs from *100 to *30.
- This means that for every ~2.82 Singularity Levels obtained from ℵω without SFU21, you can obtain 1 more Singularity Level from ℵω. [Check if this is correct]
- Additionally, SFU23 reduces the cost scaling for Dark Manifolds costs from *5 to *4.
- This means that for every ~6.21 Singularity Levels obtained from Dark Manifolds without SFU23, you can obtain 1 more Singularity Level from Dark Manifolds. [Check if this is correct]
- SFU21 reduces the cost scaling for ℵω Singularity costs from *100 to *30.
Singularity Level and Ordinal Required to Factor Boost[]
[WIP because the Singularity Level and ordinal requirements are not fully completed.]
For every Singularity Level, you will need 3x more clicks to able to Factor Boost (4*340+(SL-1) clicks required)
SL | code realDisplayHugeOrd() in value without psi
|
Ordinal Required to Factor Boost | Factor Boost Multiplier | Clicks Needed, Divided by Clicks Needed for BHO | ||||
---|---|---|---|---|---|---|---|---|
Madore's Notation | Buchholz's Notation | Madore's Notation | Buchholz's Notation | None | SFU72 | |||
1 | ? | ? | BHO | BHO = ψ(Ω2) | 1 | 1 | 1 | |
2 | 3^27 = 3^3^3 | 3^(27*3^(1/3)) = 3^3^(10/3)+27 | ψ(Ω2Ω+ψ1(Ω2Ω)) | 3 | 5 | 3 | ||
3 | 3^28 | 3^(28*3^(1/3)) | ψ(εΩ2Ω) | ψ(Ω2Ω+ψ1(Ω2Ω)Ω) | 5 | 10 | 9 | |
4 | 3^29 | 3^(29*3^(1/3)) | ψ(εΩ2Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω)Ω2) | 7 | 15 | 27 | |
5 | ? | ? | ψ(εΩ2Ωω) | ψ(Ω2Ω+ψ1(Ω2Ω)Ωω) | 9 | 22 | 81 | |
6 | 3^30 | 3^(30*3^(1/3)) | ψ(εΩ2ΩΩ) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ) | 11 | 29 | 243 | |
7 | 3^31 | 3^(31*3^(1/3)) | ψ(εΩ2ΩΩ+1) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ+1) | 13 | 36 | 729 | |
8 | 3^32 | 3^(32*3^(1/3)) | ψ(εΩ2ΩΩ+2) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ+2) | 15 | 44 | 2187 | |
9 | ? | ? | ψ(εΩ2ΩΩ+ω) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ+ω) | 17 | 53 | 6561 | |
10 | 3^33 | 3^(33*3^(1/3)) | ψ(εΩ2ΩΩ2) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ2) | 19 | 62 | 19683 | |
11 | 3^34 | 3^(34*3^(1/3)) | ψ(εΩ2ΩΩ2+1) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ2+1) | 21 | 71 | 59049 | |
12 | 3^35 | 3^(35*3^(1/3)) | ψ(εΩ2ΩΩ2+2) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ2+2) | 23 | 81 | 177147 | |
13 | ? | ? | ψ(εΩ2ΩΩ2+ω) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ2+ω) | 25 | 91 | 531441 | |
14 | ? | ? | ψ(εΩ2ΩΩω) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩω) | 27 | 101 | 1.594e6 | |
15 | 3^36 | 3^(36*3^(1/3)) | ψ(εΩ2ΩΩ2) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ2) | 29 | 112 | 4.783e6 | |
16 | 3^37 | 3^(37*3^(1/3)) | ψ(εΩ2ΩΩ2+1) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ2+1) | 31 | 122 | 1.435e7 | |
17 | 3^38 | 3^(38*3^(1/3)) | ψ(εΩ2ΩΩ2+2) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ2+2) | 33 | 134 | 4.305e7 | |
18 | ? | ? | ψ(εΩ2ΩΩ2+ω) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ2+ω) | 35 | 145 | 1.291e8 | |
19 | 3^39 | 3^(39*3^(1/3)) | ψ(εΩ2ΩΩ2+Ω) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ2+Ω) | 37 | 157 | 3.874e8 | |
20 | 3^40 | 3^(40*3^(1/3)) | ψ(εΩ2ΩΩ2+Ω+1) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ2+Ω+1) | 39 | 169 | 1.162e9 | |
21 | 3^41 | 3^(41*3^(1/3)) | ψ(εΩ2ΩΩ2+Ω+2) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ2+Ω+2) | 41 | 181 | 3.487e9 | |
22 | ? | ? | ψ(εΩ2ΩΩ2+Ω+ω) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ2+Ω+ω) | 43 | 194 | 1.046e10 | |
23 | 3^42 | 3^(42*3^(1/3)) | ψ(εΩ2ΩΩ2+Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ2+Ω2) | 45 | 206 | 3.138e10 | |
24 | 3^43 | 3^(43*3^(1/3)) | ψ(εΩ2ΩΩ2+Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ2+Ω2+1) | 47 | 219 | 9.414e10 | |
25 | 3^44 | 3^(44*3^(1/3)) | ψ(εΩ2ΩΩ2+Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ2+Ω2+2) | 49 | 232 | 2.824e11 | |
26 | ? | ? | ψ(εΩ2ΩΩ2+Ω2+ω) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ2+Ω2+ω) | 51 | 246 | 8.472e11 | |
27 | ? | ? | ψ(εΩ2ΩΩ2+Ωω) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ2+Ωω) | 53 | 259 | 2.541e12 | |
28 | 3^45 | 3^(45*3^(1/3)) | ψ(εΩ2ΩΩ22) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ22) | 55 | 273 | 7.625e12 | |
29 | 3^46 | 3^(46*3^(1/3)) | ψ(εΩ2ΩΩ22+1) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ22+1) | 57 | 287 | 2.287e13 | |
30 | 3^47 | 3^(47*3^(1/3)) | ψ(εΩ2ΩΩ22+2) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ22+2) | 59 | 301 | 6.863e13 | |
31 | ? | ? | ψ(εΩ2ΩΩ22+ω) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ22+ω) | 61 | 316 | 2.058e14 | |
32 | 3^48 | 3^(48*3^(1/3)) | ψ(εΩ2ΩΩ22+Ω) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ22+Ω) | 63 | 330 | 6.176e14 | |
33 | 3^49 | 3^(49*3^(1/3)) | ψ(εΩ2ΩΩ22+Ω+1) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ22+Ω+1) | 65 | 345 | 1.853e15 | |
34 | 3^50 | 3^(50*3^(1/3)) | ψ(εΩ2ΩΩ22+Ω+2) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ22+Ω+2) | 67 | 360 | 5.559e15 | |
35 | ? | ? | ψ(εΩ2ΩΩ22+Ω+ω) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ22+Ω+ω) | 69 | 375 | 1.667e16 | |
36 | 3^51 | 3^(51*3^(1/3)) | ψ(εΩ2ΩΩ22+Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ22+Ω2) | 71 | 391 | 5.003e16 | |
37 | 3^52 | 3^(52*3^(1/3)) | ψ(εΩ2ΩΩ22+Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ22+Ω2+1) | 73 | 406 | 1.500e17 | |
38 | 3^53 | 3^(53*3^(1/3)) | ψ(εΩ2ΩΩ22+Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ22+Ω2+2) | 75 | 422 | 4.502e17 | |
39 | ? | ? | ψ(εΩ2ΩΩ22+Ω2+ω) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ22+Ω2+ω) | 77 | 438 | 1.350e18 | |
40 | ? | ? | ψ(εΩ2ΩΩ22+Ωω) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ22+Ωω) | 79 | 454 | 4.052e18 | |
41 | ? | ? | ψ(εΩ2ΩΩ2ω) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩ2ω) | 81 | 470 | 1.215e19 | |
42 | ? | ? | ψ(εΩ2ΩΩω) | ψ(Ω2Ω+ψ1(Ω2Ω)ΩΩω) | 83 | 486 | 3.647e19 | |
43 | ? | ? | ψ(εΩ2εΩ+ω) | ψ(Ω2Ω+ψ1(Ω2Ω)ψ1(Ω2)) | 85 | 503 | 1.094e20 | |
44 | 3^54 | 3^(54*3^(1/3)) | ψ(εΩ22) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))) | 87 | 519 | 3.282e20 | |
45 | 3^55 | 3^(55*3^(1/3)) | ψ(εΩ22Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))Ω) | 89 | 536 | 9.847e20 | |
46 | 3^56 | 3^(56*3^(1/3)) | ψ(εΩ22Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))Ω2) | 91 | 553 | 2.954e21 | |
47 | ? | ? | ψ(εΩ22Ωω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))Ωω) | 93 | 570 | 8.863e21 | |
48 | 3^57 | 3^(57*3^(1/3)) | ψ(εΩ22ΩΩ) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ) | 95 | 587 | 2.659e22 | |
49 | 3^58 | 3^(58*3^(1/3)) | ψ(εΩ22ΩΩ+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ+1) | 97 | 605 | 7.977e22 | |
50 | 3^59 | 3^(59*3^(1/3)) | ψ(εΩ22ΩΩ+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ+2) | 99 | 622 | 2.393e23 | |
51 | ? | ? | ψ(εΩ22ΩΩ+ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ+ω) | 101 | 640 | 7.179e23 | |
52 | 3^60 | 3^(60*3^(1/3)) | ψ(εΩ22ΩΩ2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ2) | 103 | 658 | 2.154e24 | |
53 | 3^61 | 3^(61*3^(1/3)) | ψ(εΩ22ΩΩ2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ2+1) | 105 | 676 | 6.461e24 | |
54 | 3^62 | 3^(62*3^(1/3)) | ψ(εΩ22ΩΩ2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ2+2) | 107 | 694 | 1.938e25 | |
55 | ? | ? | ψ(εΩ22ΩΩ2+ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ2+ω) | 109 | 712 | 5.815e25 | |
56 | ? | ? | ψ(εΩ22ΩΩω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩω) | 111 | 730 | 1.744e26 | |
57 | 3^63 | 3^(63*3^(1/3)) | ψ(εΩ22ΩΩ2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ2) | 113 | 749 | 5.233e26 | |
58 | 3^64 | 3^(64*3^(1/3)) | ψ(εΩ22ΩΩ2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ2+1) | 115 | 767 | 1.570e27 | |
59 | 3^65 | 3^(65*3^(1/3)) | ψ(εΩ22ΩΩ2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ2+2) | 117 | 786 | 4.710e27 | |
60 | ? | ? | ψ(εΩ22ΩΩ2+ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ2+ω) | 119 | 805 | 1.413e28 | |
61 | 3^66 | 3^(66*3^(1/3)) | ψ(εΩ22ΩΩ2+Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ2+Ω) | 121 | 824 | 4.239e28 | |
62 | 3^67 | 3^(67*3^(1/3)) | ψ(εΩ22ΩΩ2+Ω+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ2+Ω+1) | 123 | 843 | 1.272e29 | |
63 | 3^68 | 3^(68*3^(1/3)) | ψ(εΩ22ΩΩ2+Ω+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ2+Ω+2) | 125 | 862 | 3.815e29 | |
64 | ? | ? | ψ(εΩ22ΩΩ2+Ω+ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ2+Ω+ω) | 127 | 882 | 1.145e30 | |
65 | 3^69 | 3^(69*3^(1/3)) | ψ(εΩ22ΩΩ2+Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ2+Ω2) | 129 | 901 | 3.434e30 | |
66 | 3^70 | 3^(70*3^(1/3)) | ψ(εΩ22ΩΩ2+Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ2+Ω2+1) | 131 | 921 | 1.030e31 | |
67 | 3^71 | 3^(71*3^(1/3)) | ψ(εΩ22ΩΩ2+Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ2+Ω2+2) | 133 | 941 | 3.090e31 | |
68 | ? | ? | ψ(εΩ22ΩΩ2+Ω2+ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ2+Ω2+ω) | 135 | 960 | 9.271e31 | |
69 | ? | ? | ψ(εΩ22ΩΩ2+Ωω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ2+Ωω) | 137 | 980 | 2.781e32 | |
70 | 3^72 | 3^(72*3^(1/3)) | ψ(εΩ22ΩΩ22) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ22) | 139 | 1001 | 8.344e32 | |
71 | 3^73 | 3^(73*3^(1/3)) | ψ(εΩ22ΩΩ22+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ22+1) | 141 | 1021 | 2.503e33 | |
72 | 3^74 | 3^(74*3^(1/3)) | ψ(εΩ22ΩΩ22+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ22+2) | 143 | 1041 | 7.509e33 | |
73 | ? | ? | ψ(εΩ22ΩΩ22+ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ22+ω) | 145 | 1061 | 2.253e34 | |
74 | 3^75 | 3^(75*3^(1/3)) | ψ(εΩ22ΩΩ22+Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ22+Ω) | 147 | 1082 | 6.759e34 | |
75 | 3^76 | 3^(76*3^(1/3)) | ψ(εΩ22ΩΩ22+Ω+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ22+Ω+1) | 149 | 1103 | 2.028e35 | |
76 | 3^77 | 3^(77*3^(1/3)) | ψ(εΩ22ΩΩ22+Ω+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ22+Ω+2) | 151 | 1123 | 6.083e35 | |
77 | ? | ? | ψ(εΩ22ΩΩ22+Ω+ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ22+Ω+ω) | 153 | 1144 | 1.825e36 | |
78 | 3^78 | 3^(78*3^(1/3)) | ψ(εΩ22ΩΩ22+Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ22+Ω2) | 155 | 1165 | 5.474e36 | |
79 | 3^79 | 3^(79*3^(1/3)) | ψ(εΩ22ΩΩ22+Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ22+Ω2+1) | 157 | 1186 | 1.642e37 | |
80 | 3^80 | 3^(80*3^(1/3)) | ψ(εΩ22ΩΩ22+Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ22+Ω2+2) | 159 | 1208 | 4.927e37 | |
81 | ? | ? | ψ(εΩ22ΩΩ22+Ω2+ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ22+Ω2+ω) | 161 | 1229 | 1.478e38 | |
82 | ? | ? | ψ(εΩ22ΩΩ22+Ωω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ22+Ωω) | 163 | 1250 | 4.434e38 | |
83 | ? | ? | ψ(εΩ22ΩΩ2ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩ2ω) | 165 | 1272 | 1.330e39 | |
84 | ? | ? | ψ(εΩ22ΩΩω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ΩΩω) | 167 | 1294 | 3.991e39 | |
85 | ? | ? | ψ(εΩ22εΩ+ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω))ψ1(Ω2Ω)) | 169 | 1315 | 1.197e40 | |
86 | ? | ? | ψ(εΩ2ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω)ω)) | 171 | 1337 | 3.592e40 | |
87 | 3^81 = 3^3^4 | 3^(81*3^(1/3)) = 3^3^(1+10/3)+27 | ψ(εΩ2Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω))) | 173 | 1359 | 1.078e41 | |
129 | 3^108 | 3^(108*3^(1/3)) | ψ(εΩ2Ω+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω))ψ1(Ω2Ω)) | 257 | 2365 | ||
171 | 3^135 | 3^(135*3^(1/3)) | ψ(εΩ2Ω+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω))ψ1(Ω2Ω+ψ1(Ω2Ω))) | 341 | 3514 | ||
214 | 3^162 | 3^(162*3^(1/3)) | ψ(εΩ2Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω)2)) | 427 | 4815 | ||
256 | 3^189 | 3^(189*3^(1/3)) | ψ(εΩ2Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω)2)ψ1(Ω2Ω)) | 511 | |||
298 | 3^216 | 3^(216*3^(1/3)) | ψ(εΩ2Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω)2)ψ1(Ω2Ω+ψ1(Ω2Ω))) | 595 | |||
342 | 3^243 = 3^3^5 | 3^(243*3^(1/3)) = 3^3^(2+10/3)+27 | ψ(εΩ2Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2))) | 683 | |||
384 | 3^270 | 3^(270*3^(1/3)) | ψ(εΩ2Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2))ψ1(Ω2Ω)) | 767 | |||
426 | 3^297 | 3^(297*3^(1/3)) | ψ(εΩ2Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2))ψ1(Ω2Ω+ψ1(Ω2Ω))) | 851 | |||
469 | 3^324 | 3^(324*3^(1/3)) | ψ(εΩ2Ω2+Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2))ψ1(Ω2Ω+ψ1(Ω2Ω+Ω))) | 937 | |||
511 | 3^351 | 3^(351*3^(1/3)) | ψ(εΩ2Ω2+Ω+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2))ψ1(Ω2Ω+ψ1(Ω2Ω+Ω))ψ1(Ω2Ω)) | 1021 | |||
553 | 3^378 | 3^(378*3^(1/3)) | ψ(εΩ2Ω2+Ω+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2))ψ1(Ω2Ω+ψ1(Ω2Ω+Ω))ψ1(Ω2Ω+ψ1(Ω2Ω))) | 1105 | |||
596 | 3^405 | 3^(405*3^(1/3)) | ψ(εΩ2Ω2+Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2))ψ1(Ω2Ω+ψ1(Ω2Ω+Ω)2)) | 1191 | |||
638 | 3^432 | 3^(432*3^(1/3)) | ψ(εΩ2Ω2+Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2))ψ1(Ω2Ω+ψ1(Ω2Ω+Ω)2)ψ1(Ω2Ω)) | 1275 | |||
680 | 3^459 | 3^(459*3^(1/3)) | ψ(εΩ2Ω2+Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2))ψ1(Ω2Ω+ψ1(Ω2Ω+Ω)2)ψ1(Ω2Ω+ψ1(Ω2Ω))) | ||||
724 | 3^486 | 3^(486*3^(1/3)) | ψ(εΩ2Ω22) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2)2)) | ||||
766 | 3^513 | 3^(513*3^(1/3)) | ψ(εΩ2Ω22+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2)2)ψ1(Ω2Ω)) | ||||
808 | 3^540 | 3^(540*3^(1/3)) | ψ(εΩ2Ω22+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2)2)ψ1(Ω2Ω+ψ1(Ω2Ω))) | ||||
851 | 3^567 | 3^(567*3^(1/3)) | ψ(εΩ2Ω22+Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2)2)ψ1(Ω2Ω+ψ1(Ω2Ω+Ω))) | ||||
893 | 3^594 | 3^(594*3^(1/3)) | ψ(εΩ2Ω22+Ω+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2)2)ψ1(Ω2Ω+ψ1(Ω2Ω+Ω))ψ1(Ω2Ω)) | ||||
935 | 3^621 | 3^(621*3^(1/3)) | ψ(εΩ2Ω22+Ω+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2)2)ψ1(Ω2Ω+ψ1(Ω2Ω+Ω))ψ1(Ω2Ω+ψ1(Ω2Ω))) | ||||
978 | 3^648 | 3^(648*3^(1/3)) | ψ(εΩ2Ω22+Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2)2)ψ1(Ω2Ω+ψ1(Ω2Ω+Ω)2)) | ||||
1,020 | 3^675 | 3^(675*3^(1/3)) | ψ(εΩ2Ω22+Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2)2)ψ1(Ω2Ω+ψ1(Ω2Ω+Ω)2)ψ1(Ω2Ω)) | ||||
1,062 | 3^702 | 3^(702*3^(1/3)) | ψ(εΩ2Ω22+Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2)2)ψ1(Ω2Ω+ψ1(Ω2Ω+Ω)2)ψ1(Ω2Ω+ψ1(Ω2Ω))) | ||||
1,108 | 3^729 = 3^3^6 | 3^(729*3^(1/3)) = 3^3^(3+10/3)+27 | ψ(εΩ2ΩΩ) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2))) | ||||
3,405 | 3^2,187 = 3^3^7 | 3^(2,187*3^(1/3)) = 3^3^(4+10/3)+27 | ψ(εΩ2ΩΩ+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2+Ω))) | ||||
10,296 | 3^6,561 = 3^3^8 | 3^(6,561*3^(1/3)) = 3^3^(5+10/3)+27 | ψ(εΩ2ΩΩ+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω2+Ω2))) | ||||
30,970 | 3^19,683 = 3^3^9 | 3^(19,683*3^(1/3)) = 3^3^(6+10/3)+27 | ψ(εΩ2ΩΩ2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω22))) | ||||
92,991 | 3^59,049 = 3^3^10 | 3^(59,049*3^(1/3)) = 3^3^(7+10/3)+27 | ψ(εΩ2ΩΩ2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω22+Ω))) | ||||
279,054 | 3^177,147 = 3^3^11 | 3^(177,147*3^(1/3)) = 3^3^(8+10/3)+27 | ψ(εΩ2ΩΩ2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+Ω22+Ω2))) | ||||
837,245 | 3^531,441 = 3^3^12 | 3^(531,441*3^(1/3)) = 3^3^(9+10/3)+27 | ψ(εΩ2ΩΩ2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ))) | ||||
2,511,816 | 3^1,594,323 = 3^3^13 | 3^(1,594,323*3^(1/3)) = 3^3^(10+10/3)+27 | ψ(εΩ2ΩΩ2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+Ω))) | ||||
7,535,529 | 3^4,782,969 = 3^3^14 | 3^(4,782,969*3^(1/3)) = 3^3^(11+10/3)+27 | ψ(εΩ2ΩΩ2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+Ω2))) | ||||
22,606,669 | 3^14,348,907 = 3^3^15 | 3^(14,348,907*3^(1/3)) = 3^3^(12+10/3)+27 | ψ(εΩ2ΩΩ2+Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+Ω2))) | ||||
67,820,088 | 3^43,046,721 = 3^3^16 | 3^(43,046,721*3^(1/3)) = 3^3^(13+10/3)+27 | ψ(εΩ2ΩΩ2+Ω+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+Ω2+Ω))) | ||||
203,468,345 | 3^129,140,163 = 3^3^17 | 3^(129,140,163*3^(1/3)) = 3^3^(14+10/3)+27 | ψ(εΩ2ΩΩ2+Ω+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+Ω2+Ω2))) | ||||
610,405,117 | 3^387,420,489 = 3^3^18 | 3^(387,420,489*3^(1/3)) = 3^3^(15+10/3)+27 | ψ(εΩ2ΩΩ2+Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+Ω22))) | ||||
1,831,215,432 | 3^1,162,261,467 = 3^3^19 | 3^(1,162,261,467*3^(1/3)) = 3^3^(16+10/3)+27 | ψ(εΩ2ΩΩ2+Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+Ω22+Ω))) | ||||
5,493,646,377 | 3^3,486,784,401 = 3^3^20 | 3^(3,486,784,401*3^(1/3)) = 3^3^(17+10/3)+27 | ψ(εΩ2ΩΩ2+Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+Ω22+Ω2))) | ||||
16,480,939,214 | 3^10,460,353,203 = 3^3^21 | 3^(10,460,353,203*3^(1/3)) = 3^3^(18+10/3)+27 | ψ(εΩ2ΩΩ22) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2))) | ||||
49,442,817,723 | 3^31,381,059,609 = 3^3^22 | 3^(31,381,059,609*3^(1/3)) = 3^3^(19+10/3)+27 | ψ(εΩ2ΩΩ22+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+Ω))) | ||||
148,328,453,250 | 3^94,143,178,827 = 3^3^23 | 3^(94,143,178,827*3^(1/3)) = 3^3^(20+10/3)+27 | ψ(εΩ2ΩΩ22+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+Ω2))) | ||||
444,985,359,832 | 3^282,429,536,481 = 3^3^24 | 3^(282,429,536,481*3^(1/3)) = 3^3^(21+10/3)+27 | ψ(εΩ2ΩΩ22+Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+Ω2))) | ||||
1,334,956,079,577 | 3^847,288,609,443 = 3^3^25 | 3^(847,288,609,443*3^(1/3)) = 3^3^(22+10/3)+27 | ψ(εΩ2ΩΩ22+Ω+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+Ω2+Ω))) | ||||
4,004,868,238,812 | 3^2,541,865,828,329 = 3^3^26 | 3^(2,541,865,828,329*3^(1/3)) = 3^3^(23+10/3)+27 | ψ(εΩ2ΩΩ22+Ω+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+Ω2+Ω2))) | ||||
12,014,604,716,518 | 3^7,625,597,484,987 = 3^3^27 | 3^(7,625,597,484,987*3^(1/3)) = 3^3^(24+10/3)+27 | ψ(εΩ2ΩΩ22+Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+Ω22))) | ||||
36,043,814,149,635 | 3^22,876,792,454,961 = 3^3^28 | 3^(22,876,792,454,961*3^(1/3)) = 3^3^(25+10/3)+27 | ψ(εΩ2ΩΩ22+Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+Ω22+Ω))) | ||||
108,131,442,448,986 | 3^68,630,377,364,883 = 3^3^29 | 3^(68,630,377,364,883*3^(1/3)) = 3^3^(26+10/3)+27 | ψ(εΩ2ΩΩ22+Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+Ω22+Ω2))) | ||||
324,394,327,347,044 | 3^205,891,132,094,649 = 3^3^30 = 3^3^(3^3+3) | 3^(205,891,132,094,649*3^(1/3)) = 3^3^(27+10/3)+27 = 3^3^(3^3+10/3)+27 | ψ(εΩ2εΩ2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1))) | ||||
9.732e14 | 3^3^31 | 3^3^(28+10/3)+27 | ψ(εΩ2εΩ2Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+Ω))) | ||||
2.920e15 | 3^3^32 | 3^3^(29+10/3)+27 | ψ(εΩ2εΩ2Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+Ω2))) | ||||
8.759e15 | 3^3^33 | 3^3^(30+10/3)+27 | ψ(εΩ2εΩ2ΩΩ) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+Ω2))) | ||||
2.628e16 | 3^3^34 | 3^3^(31+10/3)+27 | ψ(εΩ2εΩ2ΩΩ+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+Ω2+Ω))) | ||||
7.883e16 | 3^3^35 | 3^3^(32+10/3)+27 | ψ(εΩ2εΩ2ΩΩ+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+Ω2+Ω2)) | ||||
2.365e17 | 3^3^36 | 3^3^(33+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+Ω22)) | ||||
7.095e15 | 3^3^37 | 3^3^(34+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+Ω22+Ω)) | ||||
2.128e18 | 3^3^38 | 3^3^(35+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+Ω22+Ω2)) | ||||
6.385e18 | 3^3^39 | 3^3^(36+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+ΩΩ)) | ||||
1.916e19 | 3^3^40 | 3^3^(37+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+ΩΩ+Ω)) | ||||
5.747e19 | 3^3^41 | 3^3^(38+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+ΩΩ+Ω2)) | ||||
1.724e20 | 3^3^42 | 3^3^(39+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+ΩΩ+Ω2)) | ||||
5.172e20 | 3^3^43 | 3^3^(40+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+Ω+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+ΩΩ+Ω2+Ω)) | ||||
1.552e21 | 3^3^44 | 3^3^(41+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+Ω+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+ΩΩ+Ω2+Ω2)) | ||||
4.655e21 | 3^3^45 | 3^3^(42+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+ΩΩ+Ω22)) | ||||
1.396e22 | 3^3^46 | 3^3^(43+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+ΩΩ+Ω22+Ω)) | ||||
4.189e22 | 3^3^47 | 3^3^(44+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+ΩΩ+Ω22+Ω2)) | ||||
1.257e23 | 3^3^48 | 3^3^(45+10/3)+27 | ψ(εΩ2εΩ2ΩΩ22) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+ΩΩ2)) | ||||
3.770e23 | 3^3^49 | 3^3^(46+10/3)+27 | ψ(εΩ2εΩ2ΩΩ22+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+ΩΩ2+Ω)) | ||||
1.131e24 | 3^3^50 | 3^3^(47+10/3)+27 | ψ(εΩ2εΩ2ΩΩ22+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+ΩΩ2+Ω2)) | ||||
3.393e24 | 3^3^51 | 3^3^(48+10/3)+27 | ψ(εΩ2εΩ2ΩΩ22+Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+ΩΩ2+Ω2)) | ||||
1.018e25 | 3^3^52 | 3^3^(49+10/3)+27 | ψ(εΩ2εΩ2ΩΩ22+Ω+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+ΩΩ2+Ω2+Ω)) | ||||
3.054e25 | 3^3^53 | 3^3^(50+10/3)+27 | ψ(εΩ2εΩ2ΩΩ22+Ω+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+ΩΩ2+Ω2+Ω2)) | ||||
9.162e25 | 3^3^54 | 3^3^(51+10/3)+27 | ψ(εΩ2εΩ2ΩΩ22+Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+ΩΩ2+Ω22)) | ||||
2.749e26 | 3^3^55 | 3^3^(52+10/3)+27 | ψ(εΩ2εΩ2ΩΩ22+Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+ΩΩ2+Ω22+Ω)) | ||||
8.246e26 | 3^3^56 | 3^3^(53+10/3)+27 | ψ(εΩ2εΩ2ΩΩ22+Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+1+ΩΩ2+Ω22+Ω2)) | ||||
2.474e27 | 3^3^57 | 3^3^(54+10/3)+27 | ψ(εΩ2εΩ22) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12))) | ||||
7.421e27 | 3^3^58 | 3^3^(55+10/3)+27 | ψ(εΩ2εΩ22Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+Ω))) | ||||
2.226e28 | 3^3^59 | 3^3^(56+10/3)+27 | ψ(εΩ2εΩ22Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+Ω2))) | ||||
6.679e28 | 3^3^60 | 3^3^(57+10/3)+27 | ψ(εΩ2εΩ22ΩΩ) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+Ω2))) | ||||
2.004e29 | 3^3^61 | 3^3^(58+10/3)+27 | ψ(εΩ2εΩ22ΩΩ+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+Ω2+Ω))) | ||||
6.011e29 | 3^3^62 | 3^3^(59+10/3)+27 | ψ(εΩ2εΩ22ΩΩ+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+Ω2+Ω2)) | ||||
1.803e30 | 3^3^63 | 3^3^(60+10/3)+27 | ψ(εΩ2εΩ22ΩΩ2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+Ω22)) | ||||
5.410e30 | 3^3^64 | 3^3^(61+10/3)+27 | ψ(εΩ2εΩ22ΩΩ2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+Ω22+Ω)) | ||||
1.623e31 | 3^3^65 | 3^3^(62+10/3)+27 | ψ(εΩ2εΩ22ΩΩ2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+Ω22+Ω2)) | ||||
4.869e31 | 3^3^66 | 3^3^(63+10/3)+27 | ψ(εΩ2εΩ22ΩΩ2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+ΩΩ)) | ||||
1.461e32 | 3^3^67 | 3^3^(64+10/3)+27 | ψ(εΩ2εΩ22ΩΩ2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+ΩΩ+Ω)) | ||||
4.382e32 | 3^3^68 | 3^3^(65+10/3)+27 | ψ(εΩ2εΩ22ΩΩ2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+ΩΩ+Ω2)) | ||||
1.315e33 | 3^3^69 | 3^3^(66+10/3)+27 | ψ(εΩ2εΩ22ΩΩ2+Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+ΩΩ+Ω2)) | ||||
3.944e33 | 3^3^70 | 3^3^(67+10/3)+27 | ψ(εΩ2εΩ22ΩΩ2+Ω+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+ΩΩ+Ω2+Ω)) | ||||
1.183e34 | 3^3^71 | 3^3^(68+10/3)+27 | ψ(εΩ2εΩ22ΩΩ2+Ω+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+ΩΩ+Ω2+Ω2)) | ||||
3.549e34 | 3^3^72 | 3^3^(69+10/3)+27 | ψ(εΩ2εΩ22ΩΩ2+Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+ΩΩ+Ω22)) | ||||
1.065e35 | 3^3^73 | 3^3^(70+10/3)+27 | ψ(εΩ2εΩ22ΩΩ2+Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+ΩΩ+Ω22+Ω)) | ||||
3.195e35 | 3^3^74 | 3^3^(71+10/3)+27 | ψ(εΩ2εΩ22ΩΩ2+Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+ΩΩ+Ω22+Ω2)) | ||||
9.584e35 | 3^3^75 | 3^3^(72+10/3)+27 | ψ(εΩ2εΩ22ΩΩ22) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+ΩΩ2)) | ||||
2.875e36 | 3^3^76 | 3^3^(73+10/3)+27 | ψ(εΩ2εΩ22ΩΩ22+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+ΩΩ2+Ω)) | ||||
8.625e36 | 3^3^77 | 3^3^(74+10/3)+27 | ψ(εΩ2εΩ22ΩΩ22+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+ΩΩ2+Ω2)) | ||||
2.588e37 | 3^3^78 | 3^3^(75+10/3)+27 | ψ(εΩ2εΩ22ΩΩ22+Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+ΩΩ2+Ω2)) | ||||
7.763e37 | 3^3^79 | 3^3^(76+10/3)+27 | ψ(εΩ2εΩ22ΩΩ22+Ω+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+ΩΩ2+Ω2+Ω)) | ||||
2.329e38 | 3^3^80 | 3^3^(77+10/3)+27 | ψ(εΩ2εΩ22ΩΩ22+Ω+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+ΩΩ2+Ω2+Ω2)) | ||||
6.986e38 | 3^3^81 | 3^3^(78+10/3)+27 | ψ(εΩ2εΩ22ΩΩ22+Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+ΩΩ2+Ω22)) | ||||
2.096e39 | 3^3^82 | 3^3^(79+10/3)+27 | ψ(εΩ2εΩ22ΩΩ22+Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+ΩΩ2+Ω22+Ω)) | ||||
6.288e39 | 3^3^83 | 3^3^(80+10/3)+27 | ψ(εΩ2εΩ22ΩΩ22+Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+12+ΩΩ2+Ω22+Ω2)) | ||||
1.886e40 | 3^3^84 = 3^3^(3^4+3) | 3^3^(81+10/3)+27 = 3^3^(3^4+10/3)+27 | ψ(εΩ2εΩ2Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+2))) | ||||
1.438e53 | 3^3^111 | 3^3^(108+10/3)+27 | ψ(εΩ2εΩ2Ω+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+2+ΩΩ+1))) | ||||
1.097e66 | 3^3^138 | 3^3^(135+10/3)+27 | ψ(εΩ2εΩ2Ω+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+2+ΩΩ+12))) | ||||
8.365e78 | 3^3^165 | 3^3^(162+10/3)+27 | ψ(εΩ2εΩ2Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+22))) | ||||
6.378e91 | 3^3^192 | 3^3^(189+10/3)+27 | ψ(εΩ2εΩ2Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+22+ΩΩ+1))) | ||||
4.864e104 | 3^3^219 | 3^3^(216+10/3)+27 | ψ(εΩ2εΩ2Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ+22+ΩΩ+12))) | ||||
3.709e117 | 3^3^246 = 3^3^(3^5+3) | 3^3^(243+10/3)+27 = 3^3^(3^5+10/3)+27 | ψ(εΩ2εΩ2Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2))) | ||||
2.828e130 | 3^3^273 | 3^3^(270+10/3)+27 | ψ(εΩ2εΩ2Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+ΩΩ+1))) | ||||
2.157e143 | 3^3^300 | 3^3^(297+10/3)+27 | ψ(εΩ2εΩ2Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+ΩΩ+12))) | ||||
1.546e156 | 3^3^327 | 3^3^(324+10/3)+27 | ψ(εΩ2εΩ2Ω2+Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+ΩΩ+2))) | ||||
1.254e169 | 3^3^354 | 3^3^(351+10/3)+27 | ψ(εΩ2εΩ2Ω2+Ω+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+ΩΩ+2+ΩΩ+1))) | ||||
9.564e181 | 3^3^381 | 3^3^(378+10/3)+27 | ψ(εΩ2εΩ2Ω2+Ω+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+ΩΩ+2+ΩΩ+12))) | ||||
7.293e194 | 3^3^408 | 3^3^(405+10/3)+27 | ψ(εΩ2εΩ2Ω2+Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+ΩΩ+22))) | ||||
5.561e207 | 3^3^435 | 3^3^(432+10/3)+27 | ψ(εΩ2εΩ2Ω2+Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+ΩΩ+22+ΩΩ+1))) | ||||
4.241e220 | 3^3^462 | 3^3^(459+10/3)+27 | ψ(εΩ2εΩ2Ω2+Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+ΩΩ+22+ΩΩ+12))) | ||||
3.234e233 | 3^3^489 | 3^3^(486+10/3)+27 | ψ(εΩ2εΩ2Ω22) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ22))) | ||||
2.466e246 | 3^3^516 | 3^3^(513+10/3)+27 | ψ(εΩ2εΩ2Ω22+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ22+ΩΩ+1))) | ||||
1.881e259 | 3^3^543 | 3^3^(540+10/3)+27 | ψ(εΩ2εΩ2Ω22+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ22+ΩΩ+12))) | ||||
1.434e272 | 3^3^570 | 3^3^(567+10/3)+27 | ψ(εΩ2εΩ2Ω22+Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ22+ΩΩ+2))) | ||||
1.094e285 | 3^3^597 | 3^3^(594+10/3)+27 | ψ(εΩ2εΩ2Ω22+Ω+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ22+ΩΩ+2+ΩΩ+1))) | ||||
8.339e297 | 3^3^624 | 3^3^(621+10/3)+27 | ψ(εΩ2εΩ2Ω22+Ω+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ22+ΩΩ+2+ΩΩ+12))) | ||||
6.359e310 | 3^3^651 | 3^3^(648+10/3)+27 | ψ(εΩ2εΩ2Ω22+Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ22+ΩΩ+22))) | ||||
4.849e323 | 3^3^678 | 3^3^(675+10/3)+27 | ψ(εΩ2εΩ2Ω22+Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ22+ΩΩ+22+ΩΩ+1))) | ||||
3.698e336 | 3^3^705 | 3^3^(702+10/3)+27 | ψ(εΩ2εΩ2Ω22+Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ22+ΩΩ+22+ΩΩ+12))) | ||||
2.820e349 | 3^3^732 = 3^3^(3^6+3) | 3^3^(729+10/3)+27 = 3^3^(3^6+10/3)+27 | ψ(εΩ2εΩ2ΩΩ) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+1))) | ||||
1.239e1,045 | 3^3^2,190 = 3^3^(3^7+3) | 3^3^(2,187+10/3)+27 = 3^3^(3^7+10/3)+27 | ψ(εΩ2εΩ2ΩΩ+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+2))) | ||||
1.050e3,132 | 3^3^6,564 = 3^3^(3^8+3) | 3^3^(6,561+10/3)+27 = 3^3^(3^8+10/3)+27 | ψ(εΩ2εΩ2ΩΩ+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2))) | ||||
6.404e9,392 | 3^3^19,686 = 3^3^(3^9+3) | 3^3^(19,683+10/3)+27 = 3^3^(3^9+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+1))) | ||||
1.451e28,175 | 3^3^59,052 = 3^3^(3^10+3) | 3^3^(59,049+10/3)+27 = 3^3^(3^10+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+2))) | ||||
1.689e84,522 | 3^3^177,150 = 3^3^(3^11+3) | 3^3^(177,147+10/3)+27 = 3^3^(3^11+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+Ω))) | ||||
2.663e253,563 | 3^3^531,444 = 3^3^(3^12+3) | 3^3^(531,441+10/3)+27 = 3^3^(3^12+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+Ω+1))) | ||||
1.045e760,687 | 3^3^1,594,326 = 3^3^(3^13+3) | 3^3^(1,594,323+10/3)+27 = 3^3^(3^13+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+Ω+2))) | ||||
6.300e2,282,057 | 3^3^4,782,972 = 3^3^(3^14+3) | 3^3^(4,782,969+10/3)+27 = 3^3^(3^14+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+Ω2))) | ||||
1.382e6,846,170 | 3^3^14,348,910 = 3^3^(3^15+3) | 3^3^(14,348,907+10/3)+27 = 3^3^(3^15+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+Ω2+1))) | ||||
1.458e20,538,507 | 3^3^43,046,724 = 3^3^(3^16+3) | 3^3^(43,046,721+10/3)+27 = 3^3^(3^16+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+Ω+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ2+Ω2+2))) | ||||
1.714e61,615,518 | 3^3^129,140,166 = 3^3^(3^17+3) | 3^3^(129,140,163+10/3)+27 = 3^3^(3^17+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+Ω+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ22))) | ||||
2.783e184,846,551 | 3^3^387,420,492 = 3^3^(3^18+3) | 3^3^(387,420,489+10/3)+27 = 3^3^(3^18+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+Ω2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ22+1))) | ||||
1.192e554,539,651 | 3^3^1,162,261,470 = 3^3^(3^19+3) | 3^3^(1,162,261,467+10/3)+27 = 3^3^(3^19+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+Ω2+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ22+2))) | ||||
9.351e1,663,618,949 | 3^3^3,486,784,404 = 3^3^(3^20+3) | 3^3^(3,486,784,401+10/3)+27 = 3^3^(3^20+10/3)+27 | ψ(εΩ2εΩ2ΩΩ2+Ω2+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ22+Ω))) | ||||
4.519e4,990,856,846 | 3^3^10,460,353,206 = 3^3^(3^21+3) | 3^3^(10,460,353,203+10/3)+27 = 3^3^(3^21+10/3)+27 | ψ(εΩ2εΩ2ΩΩ22) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ22+Ω+1))) | ||||
5.098e14,972,570,536 | 3^3^31,381,059,612 = 3^3^(3^22+3) | 3^3^(31,381,059,609+10/3)+27 = 3^3^(3^22+10/3)+27 | ψ(εΩ2εΩ2ΩΩ22+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ22+Ω+2))) | ||||
7.321e44,917,711,606 | 3^3^94,143,178,830 = 3^3^(3^23+3) | 3^3^(94,143,178,827+10/3)+27 = 3^3^(3^23+10/3)+27 | ψ(εΩ2εΩ2ΩΩ22+2) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ22+Ω2))) | ||||
2.169e134,753,134,817 | 3^3^282,429,536,484 = 3^3^(3^24+3) | 3^3^(282,429,536,481+10/3)+27 = 3^3^(3^24+10/3)+27 | ψ(εΩ2εΩ2ΩΩ22+Ω) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ22+Ω2+1))) | ||||
5.636e404,259,404,448 | 3^3^847,288,609,446 = 3^3^(3^25+3) | 3^3^(847,288,609,443+10/3)+27 = 3^3^(3^25+10/3)+27 | ψ(εΩ2εΩ2ΩΩ22+Ω+1) | ψ(Ω2Ω+ψ1(Ω2Ω+ψ1(Ω2Ω+ΩΩ22+Ω2+2))) | ||||
9.894e1,212,778,213,342 | 3^3^2,541,865,828,332 = 3^3^(3^26+3) | 3^3^(2,541,865,828,329+10/3)+27 = 3^3^(3^26+10/3)+27 | ψ(εΩ2εΩ2ΩΩ22+Ω+2) | ψ(Ω2Ω2) | ||||
5.352e3,638,334,640,025 | 3^3^7,625,597,484,990 = 3^3^(3^27+3) | ψ(εΩ2εΩ2ΩΩ22+Ω2) | ||||||
8.467e10,915,003,920,073 | 3^3^22,876,792,454,964 = 3^3^(3^28+3) | ψ(εΩ2εΩ2ΩΩ22+Ω2+1) | ||||||
3.368e32,745,011,760,218 | 3^3^68,630,377,364,886 = 3^3^(3^29+3) | ψ(εΩ2εΩ2ΩΩ22+Ω2+2) | ||||||
2.129e98,235,035,280,652 | 3^3^205,891,132,094,652 = 3^3^(3^30+3) | ψ(εΩ2) | ||||||
3{27}3 | 3{27}3 | 3{27}3 | ψ(way too large) | ψ(way too large)]\ | needed incrementyverse for beyond lv 900 |
Continuations to Singularity[]
Singularity Functions are a feature that builds on the Singularity. It consists of upgrades in a skill-tree, where you can buy said upgrades. You earn 1 Function per time you upgrade the Singularity.
Trivia[]
- You can downgrade the Singularity many times, resulting in added Manifold count. This is a little neat feature the developers added.
- There is a Singularity Function that boosts the Factor Boosts gain multiplier from Singularity. The formula with this is , where represents the normal Factor Boost multiplier.
- At Singularity Level 69, some text pops up below that says "👀 OMG THAT'S THE NICE NUMBER!!! 👀" as a joke.
- At Singularity Level 722 and not in Incrementyverse, the Factor Boost requirement will be display as "Hacker Alert ω" ("Endgame reached ω" before Incrementyverse update), and the game will crashed out afterward.