Ordinal Markup Wiki
Ordinal Markup Wiki
Advertisement


This page needs Polishing!
This indicates that Singularity is classified as an unpolished page. This means that even though it has all of the useful information that has been found so far, it lacks the formatting and style to become a High-Quality page.

You can help the Ordinal Markup Wiki by polishing Singularity.


Screenshot (1)

What Singularity looks like.

The Singularity () is a post-Collapse feature unlocked with a Booster Upgrade requiring 1e11 Boosters (~447,214 Factor Boosts) and 33 Challenge Completions (requires Challenge 8 x12 and the rest of the Challenges to be done).

You can spend Dark Manifolds, Manifolds and ℵω to upgrade the Singularity, respectively. Each upgrade raises the Factor Boost requirement for Factor Boosts 25 or higher, but allows you to essentially gain a multiplier to Factor Boost gain. This will also allow you to gain more Incrementy per second, helping with grinding for Manifolds for upgrading the Singularity. The cost multipliers for each of the 3 sources are x5, +1 and x100, respectively. The rest of the Costs of the 3 sources are listed in the table below. However, spending Dark Manifolds or Manifolds does not affect their requirement. Every time you upgrade the Singularity, you gain an additive 2x multiplier to Factor Boost gain for each Factor Boost you attain, being the Formula x, where represents your current Singularity level. You can also downgrade the Singularity by 1 level to get back 1 Manifold, to allow you to perform the first few Factor Boosts in Cardinal grinds quicker.

At level 20 Singularity, you unlock Singularity Functions.

Resource Base Cost Cost Growth Optimized Amount of Upgrades for Level 20 Singularity Maximum bought
Dark Manifolds 1.000e6 *5 (*4 if you have SFU23) 7 502
Manifolds 1 +1 10 398 (before Incrementyverse)

Infinity (Incrementyverse)

ω 1.000e20 *100 (*30 if you have SFU21) 2 195

Notes:

  • Once Singularity Functions are unlocked, there are two specific functions that lower the costs of purchasing Singularity levels with Dark Manifolds and ℵω.
    • SFU21 reduces the cost scaling for ℵω Singularity costs from *100 to *30.
      • This means that for every ~2.82 Singularity Levels obtained from ℵω without SFU21, you can obtain 1 more Singularity Level from ℵω. [Check if this is correct]
    • Additionally, SFU23 reduces the cost scaling for Dark Manifolds costs from *5 to *4.
      • This means that for every ~6.21 Singularity Levels obtained from Dark Manifolds without SFU23, you can obtain 1 more Singularity Level from Dark Manifolds. [Check if this is correct]

Singularity Level and Ordinal Required to Factor Boost[]

[WIP because the Singularity Level and ordinal requirements are not fully completed.]

For every Singularity Level, you will need 3x more clicks to able to Factor Boost (4*340+(SL-1) clicks required)

Singularity Level and Ordinal Required to Factor Boost
SL code realDisplayHugeOrd() in value without psi Ordinal Required to Factor Boost Factor Boost Multiplier Clicks Needed, Divided by Clicks Needed for BHO
Madore's Notation Buchholz's Notation Madore's Notation Buchholz's Notation None SFU72
1 ? ? BHO BHO = ψ(Ω2) 1 1 1
2 3^27 = 3^3^3 3^(27*3^(1/3)) = 3^3^(10/3)+27 ψ(Ω2Ω+ψ12Ω)) 3 5 3
3 3^28 3^(28*3^(1/3)) ψ(εΩ2Ω) ψ(Ω2Ω+ψ12Ω)Ω) 5 10 9
4 3^29 3^(29*3^(1/3)) ψ(εΩ2Ω2) ψ(Ω2Ω+ψ12Ω)Ω2) 7 15 27
5 ? ? ψ(εΩ2Ωω) ψ(Ω2Ω+ψ12Ω)Ωω) 9 22 81
6 3^30 3^(30*3^(1/3)) ψ(εΩ2ΩΩ) ψ(Ω2Ω+ψ12Ω)ΩΩ) 11 29 243
7 3^31 3^(31*3^(1/3)) ψ(εΩ2ΩΩ+1) ψ(Ω2Ω+ψ12Ω)ΩΩ+1) 13 36 729
8 3^32 3^(32*3^(1/3)) ψ(εΩ2ΩΩ+2) ψ(Ω2Ω+ψ12Ω)ΩΩ+2) 15 44 2187
9 ? ? ψ(εΩ2ΩΩ+ω) ψ(Ω2Ω+ψ12Ω)ΩΩ+ω) 17 53 6561
10 3^33 3^(33*3^(1/3)) ψ(εΩ2ΩΩ2) ψ(Ω2Ω+ψ12Ω)ΩΩ2) 19 62 19683
11 3^34 3^(34*3^(1/3)) ψ(εΩ2ΩΩ2+1) ψ(Ω2Ω+ψ12Ω)ΩΩ2+1) 21 71 59049
12 3^35 3^(35*3^(1/3)) ψ(εΩ2ΩΩ2+2) ψ(Ω2Ω+ψ12Ω)ΩΩ2+2) 23 81 177147
13 ? ? ψ(εΩ2ΩΩ2+ω) ψ(Ω2Ω+ψ12Ω)ΩΩ2+ω) 25 91 531441
14 ? ? ψ(εΩ2ΩΩω) ψ(Ω2Ω+ψ12Ω)ΩΩω) 27 101 1.594e6
15 3^36 3^(36*3^(1/3)) ψ(εΩ2ΩΩ2) ψ(Ω2Ω+ψ12Ω)ΩΩ2) 29 112 4.783e6
16 3^37 3^(37*3^(1/3)) ψ(εΩ2ΩΩ2+1) ψ(Ω2Ω+ψ12Ω)ΩΩ2+1) 31 122 1.435e7
17 3^38 3^(38*3^(1/3)) ψ(εΩ2ΩΩ2+2) ψ(Ω2Ω+ψ12Ω)ΩΩ2+2) 33 134 4.305e7
18 ? ? ψ(εΩ2ΩΩ2) ψ(Ω2Ω+ψ12Ω)ΩΩ2) 35 145 1.291e8
19 3^39 3^(39*3^(1/3)) ψ(εΩ2ΩΩ2) ψ(Ω2Ω+ψ12Ω)ΩΩ2) 37 157 3.874e8
20 3^40 3^(40*3^(1/3)) ψ(εΩ2ΩΩ2+Ω+1) ψ(Ω2Ω+ψ12Ω)ΩΩ2+Ω+1) 39 169 1.162e9
21 3^41 3^(41*3^(1/3)) ψ(εΩ2ΩΩ2+Ω+2) ψ(Ω2Ω+ψ12Ω)ΩΩ2+Ω+2) 41 181 3.487e9
22 ? ? ψ(εΩ2ΩΩ2+Ω+ω) ψ(Ω2Ω+ψ12Ω)ΩΩ2+Ω+ω) 43 194 1.046e10
23 3^42 3^(42*3^(1/3)) ψ(εΩ2ΩΩ2+Ω2) ψ(Ω2Ω+ψ12Ω)ΩΩ2+Ω2) 45 206 3.138e10
24 3^43 3^(43*3^(1/3)) ψ(εΩ2ΩΩ2+Ω2+1) ψ(Ω2Ω+ψ12Ω)ΩΩ2+Ω2+1) 47 219 9.414e10
25 3^44 3^(44*3^(1/3)) ψ(εΩ2ΩΩ2+Ω2+2) ψ(Ω2Ω+ψ12Ω)ΩΩ2+Ω2+2) 49 232 2.824e11
26 ? ? ψ(εΩ2ΩΩ2+Ω2+ω) ψ(Ω2Ω+ψ12Ω)ΩΩ2+Ω2+ω) 51 246 8.472e11
27 ? ? ψ(εΩ2ΩΩ2+Ωω) ψ(Ω2Ω+ψ12Ω)ΩΩ2+Ωω) 53 259 2.541e12
28 3^45 3^(45*3^(1/3)) ψ(εΩ2ΩΩ22) ψ(Ω2Ω+ψ12Ω)ΩΩ22) 55 273 7.625e12
29 3^46 3^(46*3^(1/3)) ψ(εΩ2ΩΩ22+1) ψ(Ω2Ω+ψ12Ω)ΩΩ22+1) 57 287 2.287e13
30 3^47 3^(47*3^(1/3)) ψ(εΩ2ΩΩ22+2) ψ(Ω2Ω+ψ12Ω)ΩΩ22+2) 59 301 6.863e13
31 ? ? ψ(εΩ2ΩΩ22+ω) ψ(Ω2Ω+ψ12Ω)ΩΩ22+ω) 61 316 2.058e14
32 3^48 3^(48*3^(1/3)) ψ(εΩ2ΩΩ22+Ω) ψ(Ω2Ω+ψ12Ω)ΩΩ22+Ω) 63 330 6.176e14
33 3^49 3^(49*3^(1/3)) ψ(εΩ2ΩΩ22+Ω+1) ψ(Ω2Ω+ψ12Ω)ΩΩ22+Ω+1) 65 345 1.853e15
34 3^50 3^(50*3^(1/3)) ψ(εΩ2ΩΩ22+Ω+2) ψ(Ω2Ω+ψ12Ω)ΩΩ22+Ω+2) 67 360 5.559e15
35 ? ? ψ(εΩ2ΩΩ22+Ω+ω) ψ(Ω2Ω+ψ12Ω)ΩΩ22+Ω+ω) 69 375 1.667e16
36 3^51 3^(51*3^(1/3)) ψ(εΩ2ΩΩ22+Ω2) ψ(Ω2Ω+ψ12Ω)ΩΩ22+Ω2) 71 391 5.003e16
37 3^52 3^(52*3^(1/3)) ψ(εΩ2ΩΩ22+Ω2+1) ψ(Ω2Ω+ψ12Ω)ΩΩ22+Ω2+1) 73 406 1.500e17
38 3^53 3^(53*3^(1/3)) ψ(εΩ2ΩΩ22+Ω2+2) ψ(Ω2Ω+ψ12Ω)ΩΩ22+Ω2+2) 75 422 4.502e17
39 ? ? ψ(εΩ2ΩΩ22+Ω2+ω) ψ(Ω2Ω+ψ12Ω)ΩΩ22+Ω2+ω) 77 438 1.350e18
40 ? ? ψ(εΩ2ΩΩ22+Ωω) ψ(Ω2Ω+ψ12Ω)ΩΩ22+Ωω) 79 454 4.052e18
41 ? ? ψ(εΩ2ΩΩ2ω) ψ(Ω2Ω+ψ12Ω)ΩΩ2ω) 81 470 1.215e19
42 ? ? ψ(εΩ2ΩΩω) ψ(Ω2Ω+ψ12Ω)ΩΩω) 83 486 3.647e19
43 ? ? ψ(εΩ2εΩ+ω) ψ(Ω2Ω+ψ12Ω)ψ12)) 85 503 1.094e20
44 3^54 3^(54*3^(1/3)) ψ(εΩ22) ψ(Ω2Ω+ψ12Ω+ψ12Ω))) 87 519 3.282e20
45 3^55 3^(55*3^(1/3)) ψ(εΩ22Ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω))Ω) 89 536 9.847e20
46 3^56 3^(56*3^(1/3)) ψ(εΩ22Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω))Ω2) 91 553 2.954e21
47 ? ? ψ(εΩ22Ωω) ψ(Ω2Ω+ψ12Ω+ψ12Ω))Ωω) 93 570 8.863e21
48 3^57 3^(57*3^(1/3)) ψ(εΩ22ΩΩ) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ) 95 587 2.659e22
49 3^58 3^(58*3^(1/3)) ψ(εΩ22ΩΩ+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ+1) 97 605 7.977e22
50 3^59 3^(59*3^(1/3)) ψ(εΩ22ΩΩ+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ+2) 99 622 2.393e23
51 ? ? ψ(εΩ22ΩΩ+ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ+ω) 101 640 7.179e23
52 3^60 3^(60*3^(1/3)) ψ(εΩ22ΩΩ2) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ2) 103 658 2.154e24
53 3^61 3^(61*3^(1/3)) ψ(εΩ22ΩΩ2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ2+1) 105 676 6.461e24
54 3^62 3^(62*3^(1/3)) ψ(εΩ22ΩΩ2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ2+2) 107 694 1.938e25
55 ? ? ψ(εΩ22ΩΩ2+ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ2+ω) 109 712 5.815e25
56 ? ? ψ(εΩ22ΩΩω) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩω) 111 730 1.744e26
57 3^63 3^(63*3^(1/3)) ψ(εΩ22ΩΩ2) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ2) 113 749 5.233e26
58 3^64 3^(64*3^(1/3)) ψ(εΩ22ΩΩ2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ2+1) 115 767 1.570e27
59 3^65 3^(65*3^(1/3)) ψ(εΩ22ΩΩ2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ2+2) 117 786 4.710e27
60 ? ? ψ(εΩ22ΩΩ2) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ2) 119 805 1.413e28
61 3^66 3^(66*3^(1/3)) ψ(εΩ22ΩΩ2) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ2) 121 824 4.239e28
62 3^67 3^(67*3^(1/3)) ψ(εΩ22ΩΩ2+Ω+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ2+Ω+1) 123 843 1.272e29
63 3^68 3^(68*3^(1/3)) ψ(εΩ22ΩΩ2+Ω+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ2+Ω+2) 125 862 3.815e29
64 ? ? ψ(εΩ22ΩΩ2+Ω+ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ2+Ω+ω) 127 882 1.145e30
65 3^69 3^(69*3^(1/3)) ψ(εΩ22ΩΩ2+Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ2+Ω2) 129 901 3.434e30
66 3^70 3^(70*3^(1/3)) ψ(εΩ22ΩΩ2+Ω2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ2+Ω2+1) 131 921 1.030e31
67 3^71 3^(71*3^(1/3)) ψ(εΩ22ΩΩ2+Ω2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ2+Ω2+2) 133 941 3.090e31
68 ? ? ψ(εΩ22ΩΩ2+Ω2+ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ2+Ω2+ω) 135 960 9.271e31
69 ? ? ψ(εΩ22ΩΩ2+Ωω) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ2+Ωω) 137 980 2.781e32
70 3^72 3^(72*3^(1/3)) ψ(εΩ22ΩΩ22) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ22) 139 1001 8.344e32
71 3^73 3^(73*3^(1/3)) ψ(εΩ22ΩΩ22+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ22+1) 141 1021 2.503e33
72 3^74 3^(74*3^(1/3)) ψ(εΩ22ΩΩ22+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ22+2) 143 1041 7.509e33
73 ? ? ψ(εΩ22ΩΩ22+ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ22+ω) 145 1061 2.253e34
74 3^75 3^(75*3^(1/3)) ψ(εΩ22ΩΩ22+Ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ22+Ω) 147 1082 6.759e34
75 3^76 3^(76*3^(1/3)) ψ(εΩ22ΩΩ22+Ω+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ22+Ω+1) 149 1103 2.028e35
76 3^77 3^(77*3^(1/3)) ψ(εΩ22ΩΩ22+Ω+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ22+Ω+2) 151 1123 6.083e35
77 ? ? ψ(εΩ22ΩΩ22+Ω+ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ22+Ω+ω) 153 1144 1.825e36
78 3^78 3^(78*3^(1/3)) ψ(εΩ22ΩΩ22+Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ22+Ω2) 155 1165 5.474e36
79 3^79 3^(79*3^(1/3)) ψ(εΩ22ΩΩ22+Ω2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ22+Ω2+1) 157 1186 1.642e37
80 3^80 3^(80*3^(1/3)) ψ(εΩ22ΩΩ22+Ω2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ22+Ω2+2) 159 1208 4.927e37
81 ? ? ψ(εΩ22ΩΩ22+Ω2+ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ22+Ω2+ω) 161 1229 1.478e38
82 ? ? ψ(εΩ22ΩΩ22+Ωω) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ22+Ωω) 163 1250 4.434e38
83 ? ? ψ(εΩ22ΩΩ2ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩ2ω) 165 1272 1.330e39
84 ? ? ψ(εΩ22ΩΩω) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ΩΩω) 167 1294 3.991e39
85 ? ? ψ(εΩ22εΩ+ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω))ψ12Ω)) 169 1315 1.197e40
86 ? ? ψ(εΩ2ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω)ω)) 171 1337 3.592e40
87 3^81 = 3^3^4 3^(81*3^(1/3)) = 3^3^(1+10/3)+27 ψ(εΩ2Ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω))) 173 1359 1.078e41
129 3^108 3^(108*3^(1/3)) ψ(εΩ2Ω+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω))ψ12Ω)) 257 2365
171 3^135 3^(135*3^(1/3)) ψ(εΩ2Ω+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω))ψ12Ω+ψ12Ω))) 341 3514
214 3^162 3^(162*3^(1/3)) ψ(εΩ2Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω)2)) 427 4815
256 3^189 3^(189*3^(1/3)) ψ(εΩ2Ω2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω)2)ψ12Ω)) 511
298 3^216 3^(216*3^(1/3)) ψ(εΩ2Ω2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω)2)ψ12Ω+ψ12Ω))) 595
342 3^243 = 3^3^5 3^(243*3^(1/3)) = 3^3^(2+10/3)+27 ψ(εΩ2Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2))) 683
384 3^270 3^(270*3^(1/3)) ψ(εΩ2Ω2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2))ψ12Ω)) 767
426 3^297 3^(297*3^(1/3)) ψ(εΩ2Ω2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2))ψ12Ω+ψ12Ω))) 851
469 3^324 3^(324*3^(1/3)) ψ(εΩ2Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2))ψ12Ω+ψ12Ω+Ω))) 937
511 3^351 3^(351*3^(1/3)) ψ(εΩ2Ω2+Ω+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2))ψ12Ω+ψ12Ω+Ω))ψ12Ω)) 1021
553 3^378 3^(378*3^(1/3)) ψ(εΩ2Ω2+Ω+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2))ψ12Ω+ψ12Ω+Ω))ψ12Ω+ψ12Ω))) 1105
596 3^405 3^(405*3^(1/3)) ψ(εΩ2Ω2+Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2))ψ12Ω+ψ12Ω+Ω)2)) 1191
638 3^432 3^(432*3^(1/3)) ψ(εΩ2Ω2+Ω2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2))ψ12Ω+ψ12Ω+Ω)2)ψ12Ω)) 1275
680 3^459 3^(459*3^(1/3)) ψ(εΩ2Ω2+Ω2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2))ψ12Ω+ψ12Ω+Ω)2)ψ12Ω+ψ12Ω)))
724 3^486 3^(486*3^(1/3)) ψ(εΩ2Ω22) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2)2))
766 3^513 3^(513*3^(1/3)) ψ(εΩ2Ω22+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2)2)ψ12Ω))
808 3^540 3^(540*3^(1/3)) ψ(εΩ2Ω22+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2)2)ψ12Ω+ψ12Ω)))
851 3^567 3^(567*3^(1/3)) ψ(εΩ2Ω22+Ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2)2)ψ12Ω+ψ12Ω+Ω)))
893 3^594 3^(594*3^(1/3)) ψ(εΩ2Ω22+Ω+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2)2)ψ12Ω+ψ12Ω+Ω))ψ12Ω))
935 3^621 3^(621*3^(1/3)) ψ(εΩ2Ω22+Ω+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2)2)ψ12Ω+ψ12Ω+Ω))ψ12Ω+ψ12Ω)))
978 3^648 3^(648*3^(1/3)) ψ(εΩ2Ω22+Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2)2)ψ12Ω+ψ12Ω+Ω)2))
1,020 3^675 3^(675*3^(1/3)) ψ(εΩ2Ω22+Ω2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2)2)ψ12Ω+ψ12Ω+Ω)2)ψ12Ω))
1,062 3^702 3^(702*3^(1/3)) ψ(εΩ2Ω22+Ω2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2)2)ψ12Ω+ψ12Ω+Ω)2)ψ12Ω+ψ12Ω)))
1,108 3^729 = 3^3^6 3^(729*3^(1/3)) = 3^3^(3+10/3)+27 ψ(εΩ2ΩΩ) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2)))
3,405 3^2,187 = 3^3^7 3^(2,187*3^(1/3)) = 3^3^(4+10/3)+27 ψ(εΩ2ΩΩ+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2+Ω)))
10,296 3^6,561 = 3^3^8 3^(6,561*3^(1/3)) = 3^3^(5+10/3)+27 ψ(εΩ2ΩΩ+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω2+Ω2)))
30,970 3^19,683 = 3^3^9 3^(19,683*3^(1/3)) = 3^3^(6+10/3)+27 ψ(εΩ2ΩΩ2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω22)))
92,991 3^59,049 = 3^3^10 3^(59,049*3^(1/3)) = 3^3^(7+10/3)+27 ψ(εΩ2ΩΩ2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω22+Ω)))
279,054 3^177,147 = 3^3^11 3^(177,147*3^(1/3)) = 3^3^(8+10/3)+27 ψ(εΩ2ΩΩ2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+Ω22+Ω2)))
837,245 3^531,441 = 3^3^12 3^(531,441*3^(1/3)) = 3^3^(9+10/3)+27 ψ(εΩ2ΩΩ2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ)))
2,511,816 3^1,594,323 = 3^3^13 3^(1,594,323*3^(1/3)) = 3^3^(10+10/3)+27 ψ(εΩ2ΩΩ2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+Ω)))
7,535,529 3^4,782,969 = 3^3^14 3^(4,782,969*3^(1/3)) = 3^3^(11+10/3)+27 ψ(εΩ2ΩΩ2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+Ω2)))
22,606,669 3^14,348,907 = 3^3^15 3^(14,348,907*3^(1/3)) = 3^3^(12+10/3)+27 ψ(εΩ2ΩΩ2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2)))
67,820,088 3^43,046,721 = 3^3^16 3^(43,046,721*3^(1/3)) = 3^3^(13+10/3)+27 ψ(εΩ2ΩΩ2+Ω+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+Ω)))
203,468,345 3^129,140,163 = 3^3^17 3^(129,140,163*3^(1/3)) = 3^3^(14+10/3)+27 ψ(εΩ2ΩΩ2+Ω+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+Ω2)))
610,405,117 3^387,420,489 = 3^3^18 3^(387,420,489*3^(1/3)) = 3^3^(15+10/3)+27 ψ(εΩ2ΩΩ2+Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22)))
1,831,215,432 3^1,162,261,467 = 3^3^19 3^(1,162,261,467*3^(1/3)) = 3^3^(16+10/3)+27 ψ(εΩ2ΩΩ2+Ω2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22+Ω)))
5,493,646,377 3^3,486,784,401 = 3^3^20 3^(3,486,784,401*3^(1/3)) = 3^3^(17+10/3)+27 ψ(εΩ2ΩΩ2+Ω2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22+Ω2)))
16,480,939,214 3^10,460,353,203 = 3^3^21 3^(10,460,353,203*3^(1/3)) = 3^3^(18+10/3)+27 ψ(εΩ2ΩΩ22) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2)))
49,442,817,723 3^31,381,059,609 = 3^3^22 3^(31,381,059,609*3^(1/3)) = 3^3^(19+10/3)+27 ψ(εΩ2ΩΩ22+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+Ω)))
148,328,453,250 3^94,143,178,827 = 3^3^23 3^(94,143,178,827*3^(1/3)) = 3^3^(20+10/3)+27 ψ(εΩ2ΩΩ22+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+Ω2)))
444,985,359,832 3^282,429,536,481 = 3^3^24 3^(282,429,536,481*3^(1/3)) = 3^3^(21+10/3)+27 ψ(εΩ2ΩΩ22+Ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+Ω2)))
1,334,956,079,577 3^847,288,609,443 = 3^3^25 3^(847,288,609,443*3^(1/3)) = 3^3^(22+10/3)+27 ψ(εΩ2ΩΩ22+Ω+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+Ω2+Ω)))
4,004,868,238,812 3^2,541,865,828,329 = 3^3^26 3^(2,541,865,828,329*3^(1/3)) = 3^3^(23+10/3)+27 ψ(εΩ2ΩΩ22+Ω+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+Ω2+Ω2)))
12,014,604,716,518 3^7,625,597,484,987 = 3^3^27 3^(7,625,597,484,987*3^(1/3)) = 3^3^(24+10/3)+27 ψ(εΩ2ΩΩ22+Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+Ω22)))
36,043,814,149,635 3^22,876,792,454,961 = 3^3^28 3^(22,876,792,454,961*3^(1/3)) = 3^3^(25+10/3)+27 ψ(εΩ2ΩΩ22+Ω2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+Ω22+Ω)))
108,131,442,448,986 3^68,630,377,364,883 = 3^3^29 3^(68,630,377,364,883*3^(1/3)) = 3^3^(26+10/3)+27 ψ(εΩ2ΩΩ22+Ω2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+Ω22+Ω2)))
324,394,327,347,044 3^205,891,132,094,649 = 3^3^30 = 3^3^(3^3+3) 3^(205,891,132,094,649*3^(1/3)) = 3^3^(27+10/3)+27 = 3^3^(3^3+10/3)+27 ψ(εΩ2εΩ2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1)))
9.732e14 3^3^31 3^3^(28+10/3)+27 ψ(εΩ2εΩ2Ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1+Ω)))
2.920e15 3^3^32 3^3^(29+10/3)+27 ψ(εΩ2εΩ2Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1+Ω2)))
8.759e15 3^3^33 3^3^(30+10/3)+27 ψ(εΩ2εΩ2ΩΩ) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12)))
2.628e16 3^3^34 3^3^(31+10/3)+27 ψ(εΩ2εΩ2ΩΩ+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+Ω)))
7.883e16 3^3^35 3^3^(32+10/3)+27 ψ(εΩ2εΩ2ΩΩ+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+Ω2))
2.365e17 3^3^36 3^3^(33+10/3)+27 ψ(εΩ2εΩ2ΩΩ2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+122))
7.095e15 3^3^37 3^3^(34+10/3)+27 ψ(εΩ2εΩ2ΩΩ2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+122+Ω))
2.128e18 3^3^38 3^3^(35+10/3)+27 ψ(εΩ2εΩ2ΩΩ2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+122+Ω2))
6.385e18 3^3^39 3^3^(36+10/3)+27 ψ(εΩ2εΩ2ΩΩ2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1Ω))
1.916e19 3^3^40 3^3^(37+10/3)+27 ψ(εΩ2εΩ2ΩΩ2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1Ω+Ω))
5.747e19 3^3^41 3^3^(38+10/3)+27 ψ(εΩ2εΩ2ΩΩ2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1Ω+Ω2))
1.724e20 3^3^42 3^3^(39+10/3)+27 ψ(εΩ2εΩ2ΩΩ2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1Ω2))
5.172e20 3^3^43 3^3^(40+10/3)+27 ψ(εΩ2εΩ2ΩΩ2+Ω+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1Ω2+Ω))
1.552e21 3^3^44 3^3^(41+10/3)+27 ψ(εΩ2εΩ2ΩΩ2+Ω+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1Ω2+Ω2))
4.655e21 3^3^45 3^3^(42+10/3)+27 ψ(εΩ2εΩ2ΩΩ2+Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1Ω22))
1.396e22 3^3^46 3^3^(43+10/3)+27 ψ(εΩ2εΩ2ΩΩ2+Ω2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1Ω22+Ω))
4.189e22 3^3^47 3^3^(44+10/3)+27 ψ(εΩ2εΩ2ΩΩ2+Ω2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1Ω22+Ω2))
1.257e23 3^3^48 3^3^(45+10/3)+27 ψ(εΩ2εΩ2ΩΩ22) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1Ω2))
3.770e23 3^3^49 3^3^(46+10/3)+27 ψ(εΩ2εΩ2ΩΩ22+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1Ω2+Ω))
1.131e24 3^3^50 3^3^(47+10/3)+27 ψ(εΩ2εΩ2ΩΩ22+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1Ω2+Ω2))
3.393e24 3^3^51 3^3^(48+10/3)+27 ψ(εΩ2εΩ2ΩΩ22+Ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1Ω2+Ω2))
1.018e25 3^3^52 3^3^(49+10/3)+27 ψ(εΩ2εΩ2ΩΩ22+Ω+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1Ω2+Ω2+Ω))
3.054e25 3^3^53 3^3^(50+10/3)+27 ψ(εΩ2εΩ2ΩΩ22+Ω+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1Ω2+Ω2+Ω2))
9.162e25 3^3^54 3^3^(51+10/3)+27 ψ(εΩ2εΩ2ΩΩ22+Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1Ω2+Ω22))
2.749e26 3^3^55 3^3^(52+10/3)+27 ψ(εΩ2εΩ2ΩΩ22+Ω2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1Ω2+Ω22+Ω))
8.246e26 3^3^56 3^3^(53+10/3)+27 ψ(εΩ2εΩ2ΩΩ22+Ω2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+1Ω2+Ω22+Ω2))
2.474e27 3^3^57 3^3^(54+10/3)+27 ψ(εΩ2εΩ22) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12)))
7.421e27 3^3^58 3^3^(55+10/3)+27 ψ(εΩ2εΩ22Ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+Ω)))
2.226e28 3^3^59 3^3^(56+10/3)+27 ψ(εΩ2εΩ22Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+Ω2)))
6.679e28 3^3^60 3^3^(57+10/3)+27 ψ(εΩ2εΩ22ΩΩ) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+Ω2)))
2.004e29 3^3^61 3^3^(58+10/3)+27 ψ(εΩ2εΩ22ΩΩ+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+Ω2+Ω)))
6.011e29 3^3^62 3^3^(59+10/3)+27 ψ(εΩ2εΩ22ΩΩ+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+Ω2+Ω2))
1.803e30 3^3^63 3^3^(60+10/3)+27 ψ(εΩ2εΩ22ΩΩ2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+Ω22))
5.410e30 3^3^64 3^3^(61+10/3)+27 ψ(εΩ2εΩ22ΩΩ2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+Ω22+Ω))
1.623e31 3^3^65 3^3^(62+10/3)+27 ψ(εΩ2εΩ22ΩΩ2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+Ω22+Ω2))
4.869e31 3^3^66 3^3^(63+10/3)+27 ψ(εΩ2εΩ22ΩΩ2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+ΩΩ))
1.461e32 3^3^67 3^3^(64+10/3)+27 ψ(εΩ2εΩ22ΩΩ2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+ΩΩ+Ω))
4.382e32 3^3^68 3^3^(65+10/3)+27 ψ(εΩ2εΩ22ΩΩ2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+ΩΩ+Ω2))
1.315e33 3^3^69 3^3^(66+10/3)+27 ψ(εΩ2εΩ22ΩΩ2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+ΩΩ2))
3.944e33 3^3^70 3^3^(67+10/3)+27 ψ(εΩ2εΩ22ΩΩ2+Ω+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+ΩΩ2+Ω))
1.183e34 3^3^71 3^3^(68+10/3)+27 ψ(εΩ2εΩ22ΩΩ2+Ω+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+ΩΩ2+Ω2))
3.549e34 3^3^72 3^3^(69+10/3)+27 ψ(εΩ2εΩ22ΩΩ2+Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+ΩΩ22))
1.065e35 3^3^73 3^3^(70+10/3)+27 ψ(εΩ2εΩ22ΩΩ2+Ω2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+ΩΩ22+Ω))
3.195e35 3^3^74 3^3^(71+10/3)+27 ψ(εΩ2εΩ22ΩΩ2+Ω2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+ΩΩ22+Ω2))
9.584e35 3^3^75 3^3^(72+10/3)+27 ψ(εΩ2εΩ22ΩΩ22) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+ΩΩ2))
2.875e36 3^3^76 3^3^(73+10/3)+27 ψ(εΩ2εΩ22ΩΩ22+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+ΩΩ2+Ω))
8.625e36 3^3^77 3^3^(74+10/3)+27 ψ(εΩ2εΩ22ΩΩ22+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+ΩΩ2+Ω2))
2.588e37 3^3^78 3^3^(75+10/3)+27 ψ(εΩ2εΩ22ΩΩ22+Ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+ΩΩ2+Ω2))
7.763e37 3^3^79 3^3^(76+10/3)+27 ψ(εΩ2εΩ22ΩΩ22+Ω+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+ΩΩ2+Ω2+Ω))
2.329e38 3^3^80 3^3^(77+10/3)+27 ψ(εΩ2εΩ22ΩΩ22+Ω+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+ΩΩ2+Ω2+Ω2))
6.986e38 3^3^81 3^3^(78+10/3)+27 ψ(εΩ2εΩ22ΩΩ22+Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+ΩΩ2+Ω22))
2.096e39 3^3^82 3^3^(79+10/3)+27 ψ(εΩ2εΩ22ΩΩ22+Ω2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+ΩΩ2+Ω22+Ω))
6.288e39 3^3^83 3^3^(80+10/3)+27 ψ(εΩ2εΩ22ΩΩ22+Ω2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+12+ΩΩ2+Ω22+Ω2))
1.886e40 3^3^84 = 3^3^(3^4+3) 3^3^(81+10/3)+27 = 3^3^(3^4+10/3)+27 ψ(εΩ2εΩ2Ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+2)))
1.438e53 3^3^111 3^3^(108+10/3)+27 ψ(εΩ2εΩ2Ω+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+2Ω+1)))
1.097e66 3^3^138 3^3^(135+10/3)+27 ψ(εΩ2εΩ2Ω+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+2Ω+12)))
8.365e78 3^3^165 3^3^(162+10/3)+27 ψ(εΩ2εΩ2Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+22)))
6.378e91 3^3^192 3^3^(189+10/3)+27 ψ(εΩ2εΩ2Ω2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+22+ΩΩ+1)))
4.864e104 3^3^219 3^3^(216+10/3)+27 ψ(εΩ2εΩ2Ω2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ+22+ΩΩ+12)))
3.709e117 3^3^246 = 3^3^(3^5+3) 3^3^(243+10/3)+27 = 3^3^(3^5+10/3)+27 ψ(εΩ2εΩ2Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2)))
2.828e130 3^3^273 3^3^(270+10/3)+27 ψ(εΩ2εΩ2Ω2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2Ω+1)))
2.157e143 3^3^300 3^3^(297+10/3)+27 ψ(εΩ2εΩ2Ω2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2Ω+12)))
1.546e156 3^3^327 3^3^(324+10/3)+27 ψ(εΩ2εΩ2Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2Ω+2)))
1.254e169 3^3^354 3^3^(351+10/3)+27 ψ(εΩ2εΩ2Ω2+Ω+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2Ω+2Ω+1)))
9.564e181 3^3^381 3^3^(378+10/3)+27 ψ(εΩ2εΩ2Ω2+Ω+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2Ω+2Ω+12)))
7.293e194 3^3^408 3^3^(405+10/3)+27 ψ(εΩ2εΩ2Ω2+Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2Ω+22)))
5.561e207 3^3^435 3^3^(432+10/3)+27 ψ(εΩ2εΩ2Ω2+Ω2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2Ω+22+ΩΩ+1)))
4.241e220 3^3^462 3^3^(459+10/3)+27 ψ(εΩ2εΩ2Ω2+Ω2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2Ω+22+ΩΩ+12)))
3.234e233 3^3^489 3^3^(486+10/3)+27 ψ(εΩ2εΩ2Ω22) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22)))
2.466e246 3^3^516 3^3^(513+10/3)+27 ψ(εΩ2εΩ2Ω22+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22+ΩΩ+1)))
1.881e259 3^3^543 3^3^(540+10/3)+27 ψ(εΩ2εΩ2Ω22+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22+ΩΩ+12)))
1.434e272 3^3^570 3^3^(567+10/3)+27 ψ(εΩ2εΩ2Ω22+Ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22+ΩΩ+2)))
1.094e285 3^3^597 3^3^(594+10/3)+27 ψ(εΩ2εΩ2Ω22+Ω+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22+ΩΩ+2Ω+1)))
8.339e297 3^3^624 3^3^(621+10/3)+27 ψ(εΩ2εΩ2Ω22+Ω+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22+ΩΩ+2Ω+12)))
6.359e310 3^3^651 3^3^(648+10/3)+27 ψ(εΩ2εΩ2Ω22+Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22+ΩΩ+22)))
4.849e323 3^3^678 3^3^(675+10/3)+27 ψ(εΩ2εΩ2Ω22+Ω2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22+ΩΩ+22+ΩΩ+1)))
3.698e336 3^3^705 3^3^(702+10/3)+27 ψ(εΩ2εΩ2Ω22+Ω2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22+ΩΩ+22+ΩΩ+12)))
2.820e349 3^3^732 = 3^3^(3^6+3) 3^3^(729+10/3)+27 = 3^3^(3^6+10/3)+27 ψ(εΩ2εΩ2ΩΩ) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+1)))
1.239e1,045 3^3^2,190 = 3^3^(3^7+3) 3^3^(2,187+10/3)+27 = 3^3^(3^7+10/3)+27 ψ(εΩ2εΩ2ΩΩ+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+2)))
1.050e3,132 3^3^6,564 = 3^3^(3^8+3) 3^3^(6,561+10/3)+27 = 3^3^(3^8+10/3)+27 ψ(εΩ2εΩ2ΩΩ+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2)))
6.404e9,392 3^3^19,686 = 3^3^(3^9+3) 3^3^(19,683+10/3)+27 = 3^3^(3^9+10/3)+27 ψ(εΩ2εΩ2ΩΩ2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+1)))
1.451e28,175 3^3^59,052 = 3^3^(3^10+3) 3^3^(59,049+10/3)+27 = 3^3^(3^10+10/3)+27 ψ(εΩ2εΩ2ΩΩ2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+2)))
1.689e84,522 3^3^177,150 = 3^3^(3^11+3) 3^3^(177,147+10/3)+27 = 3^3^(3^11+10/3)+27 ψ(εΩ2εΩ2ΩΩ2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2)))
2.663e253,563 3^3^531,444 = 3^3^(3^12+3) 3^3^(531,441+10/3)+27 = 3^3^(3^12+10/3)+27 ψ(εΩ2εΩ2ΩΩ2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+Ω+1)))
1.045e760,687 3^3^1,594,326 = 3^3^(3^13+3) 3^3^(1,594,323+10/3)+27 = 3^3^(3^13+10/3)+27 ψ(εΩ2εΩ2ΩΩ2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+Ω+2)))
6.300e2,282,057 3^3^4,782,972 = 3^3^(3^14+3) 3^3^(4,782,969+10/3)+27 = 3^3^(3^14+10/3)+27 ψ(εΩ2εΩ2ΩΩ2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+Ω2)))
1.382e6,846,170 3^3^14,348,910 = 3^3^(3^15+3) 3^3^(14,348,907+10/3)+27 = 3^3^(3^15+10/3)+27 ψ(εΩ2εΩ2ΩΩ2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+Ω2+1)))
1.458e20,538,507 3^3^43,046,724 = 3^3^(3^16+3) 3^3^(43,046,721+10/3)+27 = 3^3^(3^16+10/3)+27 ψ(εΩ2εΩ2ΩΩ2+Ω+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ2+Ω2+2)))
1.714e61,615,518 3^3^129,140,166 = 3^3^(3^17+3) 3^3^(129,140,163+10/3)+27 = 3^3^(3^17+10/3)+27 ψ(εΩ2εΩ2ΩΩ2+Ω+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22)))
2.783e184,846,551 3^3^387,420,492 = 3^3^(3^18+3) 3^3^(387,420,489+10/3)+27 = 3^3^(3^18+10/3)+27 ψ(εΩ2εΩ2ΩΩ2+Ω2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22+1)))
1.192e554,539,651 3^3^1,162,261,470 = 3^3^(3^19+3) 3^3^(1,162,261,467+10/3)+27 = 3^3^(3^19+10/3)+27 ψ(εΩ2εΩ2ΩΩ2+Ω2+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22+2)))
9.351e1,663,618,949 3^3^3,486,784,404 = 3^3^(3^20+3) 3^3^(3,486,784,401+10/3)+27 = 3^3^(3^20+10/3)+27 ψ(εΩ2εΩ2ΩΩ2+Ω2+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22+Ω)))
4.519e4,990,856,846 3^3^10,460,353,206 = 3^3^(3^21+3) 3^3^(10,460,353,203+10/3)+27 = 3^3^(3^21+10/3)+27 ψ(εΩ2εΩ2ΩΩ22) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22+Ω+1)))
5.098e14,972,570,536 3^3^31,381,059,612 = 3^3^(3^22+3) 3^3^(31,381,059,609+10/3)+27 = 3^3^(3^22+10/3)+27 ψ(εΩ2εΩ2ΩΩ22+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22+Ω+2)))
7.321e44,917,711,606 3^3^94,143,178,830 = 3^3^(3^23+3) 3^3^(94,143,178,827+10/3)+27 = 3^3^(3^23+10/3)+27 ψ(εΩ2εΩ2ΩΩ22+2) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22+Ω2)))
2.169e134,753,134,817 3^3^282,429,536,484 = 3^3^(3^24+3) 3^3^(282,429,536,481+10/3)+27 = 3^3^(3^24+10/3)+27 ψ(εΩ2εΩ2ΩΩ22+Ω) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22+Ω2+1)))
5.636e404,259,404,448 3^3^847,288,609,446 = 3^3^(3^25+3) 3^3^(847,288,609,443+10/3)+27 = 3^3^(3^25+10/3)+27 ψ(εΩ2εΩ2ΩΩ22+Ω+1) ψ(Ω2Ω+ψ12Ω+ψ12Ω+ΩΩ22+Ω2+2)))
9.894e1,212,778,213,342 3^3^2,541,865,828,332 = 3^3^(3^26+3) 3^3^(2,541,865,828,329+10/3)+27 = 3^3^(3^26+10/3)+27 ψ(εΩ2εΩ2ΩΩ22+Ω+2) ψ(Ω2Ω2)
5.352e3,638,334,640,025 3^3^7,625,597,484,990 = 3^3^(3^27+3) ψ(εΩ2εΩ2ΩΩ22+Ω2)
8.467e10,915,003,920,073 3^3^22,876,792,454,964 = 3^3^(3^28+3) ψ(εΩ2εΩ2ΩΩ22+Ω2+1)
3.368e32,745,011,760,218 3^3^68,630,377,364,886 = 3^3^(3^29+3) ψ(εΩ2εΩ2ΩΩ22+Ω2+2)
2.129e98,235,035,280,652 3^3^205,891,132,094,652 = 3^3^(3^30+3) ψ(εΩ2)
3{27}3 3{27}3 3{27}3 ψ(way too large) ψ(way too large)]\ needed incrementyverse for beyond lv 900

Continuations to Singularity[]

Singularity Functions are a feature that builds on the Singularity. It consists of upgrades in a skill-tree, where you can buy said upgrades. You earn 1 Function per time you upgrade the Singularity.

Trivia[]

  1. You can downgrade the Singularity many times, resulting in added Manifold count. This is a little neat feature the developers added.
  2. There is a Singularity Function that boosts the Factor Boosts gain multiplier from Singularity. The formula with this is , where represents the normal Factor Boost multiplier.
  3. At Singularity Level 69, some text pops up below that says "👀 OMG THAT'S THE NICE NUMBER!!! 👀" as a joke.
  1. At Singularity Level 722 and not in Incrementyverse, the Factor Boost requirement will be display as "Hacker Alert ω" ("Endgame reached ω" before Incrementyverse update), and the game will crashed out afterward.
Advertisement